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1. Introduction

1.1. Computational Vision

Computational vision denotes a new field in artificial intelligence that has devel-

oped in the last 15 years. Its two main goals are to develop image understanding

systems which automatically provide scene descriptions from real images, and

to understand biological vision. Its main focus is on theoretical studies of vision,
considered as an information processing task.

Since at least the work of David Marr (Marr, 1982; see also Marr and Pog-
gio, 1977), it has been customary to consider vision as an information processing
system that can be divided into several modules at different theoretical levels,

at least as a first approximation. In particular, Marr suggested that the goal of

the first step of vision is to obtain descriptions of physical properties of three-
dimensional surfaces around the viewer such as distance, orientation, texture,

and reflectance. This first step of vision, up to what has been called 2-1/2 D
sketch or intrinsic images, is mainly bottom-up, relying on general knowledge
but no special high-level information about the scene to be analyzed.

The first part of vision-from images to surfaces-has been termed earl:, vi-

sion. Although this point-of-view has been embraced widely (see a set of recent
reviews, e.g., Brown, 1984; Brady, 1981; Barrow and Tannenbaum, 1981; Pog-

gio, 1984), it is important to observe that its correctness is still to be proven. In

particular, it is still unclear what the nature of the 2-1/2-D sketch representation
is, how different visual modules interact, how their output is fused and what is

the role of high-level knowledge on early visual processes. The critical problem
of the organization of vision and of the control of the flow of information from

the different modules and how high-level knowledge is used is still very much an
open problem.

In this paper, we do not consider this larger issue. Our point-of-view is that

a rigorous analysis of individual modules of vision is bound to play 4n important

role in any full theory of vision.

4.2. alrly Vision

Early vision consists of a set of processes that recover physical properties of
visiblp three-dimensional surfaces from the two-dimensional images. Computa- -

tional, biological and epistemological arguments (see Marr and Poggio, 1977)

5
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* Edge Detection

e Spa tio- temporal interpolation and approximation

* Computation of optical flow

* Computation of lightness and albedo

* Shape from contours

9 Shape from texture

* Shape from shading

* Binocular Stereo

e Structure from motion

* Structure from stereo

* Surface reconstruction

a Computation of Surface Color

Table 1. Examples of early vision processes.

suggest that early vision processes are generic ones that correspond to concep-
tually independent modules that can be studied, at least to a very first approx-
imation, in isolation. Table 1 shows a list of some of the early vision modules.

The standard definition of computational vision is that it is inverse optics.
The direct problem-the problem of classical optics-or computer graphics-is to
determine the images of three-dimensional objects. Computational vision is
confronted with inverse problems of recovering surfaces from images. Much in-
formation is lost during the imaging process that projects a three-dimensional
world into two-dimensional arrays (images). As a consequence, vision must rely
on natural constraints, that is, general assumptions about the physical world
to derive an unambiguous output. This is typical of many inverse problems in
mathematics and physics.

In fact, the common characteristics of most early vision problems, in a sense

their deep structure, can be formalized: early vision problems are ill-posed in
the sense defined by Hadamard. A problem is well-posed when its solution (a)
exists, (b) is unique and (c) depends continuously on the initial data. Ill-posed
problems fail to satisfy one or more of these criteria.

IBvrtero, Poggio and Torre (1987) show precisely the mathematically ill-
Qposed structure of several problems listed in Table 1 (see also Poggio and Torre,
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1984.) The recognition that early vision problems are ill-posed suggests imme-

diately the use of regularization methods developed in mathematics and math-

ematical physics for solving the ill-posed problems of early vision (Poggio and

Torre, 1984). Without an explicit connection with regularization techniques,

B. Horn (1986) had earlier approached several problems in vision from a very

similar point of view, using minimization techniques for their solution.

1.3. Standard Regularization in Early Vision

The main idea for "solving" ill-posed problems is to restrict the class of admis-
sible solutions by introducing suitable a priori knowledge. In standard regu-
larization methods, due mainly to Tikhonov, the regularization of the ill-posed

problem of finding z from the data y:

Az = y (1)

results in finding z that minimizes

IIAz - y1/2 + AIPzjj2, (2)

where A is a so-called regularization parameter, 11 is the norm and IIPzjI is

called a stabilizing functional. In standard regularization theory, A is a linear
operator, the norms are quadratic and P is linear. In this method, \ controls the
compromise between the degree of regularization of a solution and its closeness

to the data (the first term in equation 2). P embeds the physical constraints
of the problem. It can be shown for quadratic variational principles that under

mild conditions the solution space is convex and a unique solution exists.

Poggio et al (1984, 1985) show that several problems in early vision can be
"solved" by standard regularization techniques and Bertero et al. (1987) give

a rigorous analysis. Surface reconstruction, optical flow at each point in the
image, optical flow along contours, color, and stereo can be computed by using

standard regularization techniques. Variational principles that are not exactly

quadratic but have the same form as equation 2 can be used for other problems
in early vision. The main results of Tikhonov can, in fact, be extended to some

cases in which the operators A and P are nonlinear, provided they satisfy certain

conditions (Morozov, 1984.)

Standard regularization methods can be implemente(l very efficiently by

parallel architectures of the fine-grain type, such as the Connection Machine

(Hillis, 1985). Minimizing formula (2) generates a convolution operator when
certain conditions are met (Poggio et al., 1986). Analog networks, either elec-

trical or chemical, can also be a natural way of solving the variational principles

dictated by standard regularization theory (Poggio and Koch, 1984, 1985). A
list of the pioblenis that cain be reguariz, l by .stindard ('guliarization theor\ or
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Problem Regularization Principle

Edge detection f [(Sf - i) 2 + A(f..)2]dx

Optical Flow f [(iZu + iv + it+ A(u + uY +v + v )]dxdy

(area based)

Optical Flow f [(V. N- ,N)2 + A(°V)2]ds

(contour based)

Surface f [(s.s - ( ± ( + 2fs 2 f,)Jdx dy

Reconstruction

Spatiotemporal f [(Sf _ i) 2 + \(Vf. V + ft)2]dx dy dt

approximation

Color III'- Az 112 + AIIPzII2

Shape from f - R(fg)) 2 + \(f. 2 + fY2 + g. 2 + gY2)]dx dy

Shading

Stereo f {V2G * (L(x,y) - R(x + d(xy),y) + A (Vd) 2 dx dy

Table 2. Regularization in early vision.

slightly non-linear versions of it are listed in Table 2, together with the associated

regularization principle.

1.4. Limitations of Standard Regularization Theory

This new theoretical framework for early vision shows clearly not only the at-

tractions, but also the limitations, that are intrinsic to the standard Tikhonov
form of regularization theory. Standard regularization methods lead to satisfac-

tory solutions of early vision problems but cannot deal effectively and directly
with a few general problems such as discontinuities and fusion of information

from multiple modules.

Standard regularization theory with linear A and P is equivalent to re-
stricting the space of solution to generalized splines, whose order depends on

the order of the stabilizer P. This mean-, that in some cases the solution is too
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smooth, and cannot be faithful in locations where discontinuities are present.
In optical flow, surface reconstruction and stereo, discontinuities are in fact not
only present, but also the most critical locations for subsequent visual informa-
tion processing. Standard regularization cannot deal well with another critical
problem of vision, the problem of fusing information from different early vision
modules. Since the regularizing principles of the standard theory are quadratic,
they lead to linear Euler-Lagrange equations. The output of different modules
can therefore be combined only in a linear way. Terzopoulous (1984; see also
Poggio et al., 1985) has shown how standard regularization techniques can be
used in the presence of discontinuities in the case of surface interpolation. After
standard regularization, locations where the solution f originates a large error
in the second term of equation 2, are identified (this needs setting a threshold
for the error in smoothness). A second regularization step is then performed
using the location of discontinuities as boundary conditions.

A similar method could be used for fusing information from multiple sour-
ces: a regularizing step could be performed and locations where terms of the type
of the first term of equation 2 give large errors would be identified. A decision
step would then follow by setting appropriately various controlling parameters in
those locations, therefore weighting in an appropriate way (for instance, vetoing
some of) the various contributing processes. "S

One would like, however, a more comprehensive and coherent theory capa-
ble of dealing directly with the problem of discontinuities and the problem of
fusing information. So the challenge for a regularization theory of early vision
is to extend it beyond standard regularization methods and their most obvious

non-linear versions.

1.5. Stochastic Route to Regularizing Early Vision

In this paper, we will outline a rigorous approach to overcome part of the ill-
posedness of vision problems, based on Bayes estimation and Markov Random
Field models, that effectively deals with the problems faced by the stanldard
regularization approach. In this approach, the a priori knowledge is r, presenited
in terms of an appropriate probability distribution, whereas in stanlard rgii-
larization a priori knowledge leaIs to restrictions on tlHe solution s ace. This

distribution, together with a prolbabilistic description of the noise that corrllIts
the observations, allows one to use Bayes theory to compute the posterior distri-
bution P 1 g, which represents the likelihood of a solution .f given the observat ions
g. In this way, we can solve the reconstruction problem by finding the estimate

whih either maximizes this a posteriori probability (istribttion (the so called '.

If

U ," .. o -" ." ' % %"t"% % ' -"5 ,"' ° .. " -"'
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Maximum a Posteriori or MAP estimate), or minimizes the expected value (with

respect to Pf1g) of an appropriate error function. The class of solutions that can
be obtained in this way is much larger than in standard regularization. In par-
ticular, we will show under which conditions this new method leads to solutions
that are of the standard regularization type (see Section 3).

The price to be paid for this increased flexibility is coniputation;d complex-
ity. New parallel architectures and possibly hybrid computers of the digital-
analog type promise howvever to deal effectively with the computational require-
ments of the methods proposed here. We will discuss these new parallel archi-
tectures in some detail at the eiid of the paper.

2. Probabilistic Models

In the rest of the paper we are concetrating on one specific problem in early
vision, the problem of surface reconstruction.

The key to the success in the use of the probabilistic approach is our abil-
ity to find a class of stochastic models (that is, random fields) tha1 t have the
following characteristics:

The probabilistic dependencies between the elements of the field
should be local. This condition is necessary if the field is to be
used to model surfaces that are only piecewise smooth; besides,
if it is satisfied, the reconstruction algorithms are likely to be
distributed, and thus, efficiently implementable in parallel hard-
ware.

The class should be rich enough, so that a wide variety of quali-
tatively different behaviors can be modeled.

The relation between the parameters of the models and the char-
acteristics of the corresponding sample fields should be relatively
transparent, so that the models are easy to specify.

It should be possible to represent the prior probability distribu-
tion P1 explicitly, so that Bayes theory can be applied.

It should be possible to specify efficient Monte Carlo procedures,
both for generating sample fields from the distribution, so that
the capability of the model to represent our prior knowledge can
be verified, and to compute the optimal estimators.
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A class of random fields that satisfies these requirements is the class of
Markov Random Fields (MRF's) on finite lattices (see Wong, 1968 and Woods,
1972). A MRF has the property that thie probability distribution of the configu-

rations of the field can always be expressed in the form of a Gibbs distribution:

Pff) = Ye (3)

where Z is a normalizing constant, To is a parameter (known as the "natural
temperature" of the field) and the "Energy function" U(f) is of the form:

U(f) = Vc(f) (4)
C

where C ranges over the "cliques" associated with the neighborhood system of
the field, and the potentials Vc(f) are functions supported on them (a clique is
either a single site, or a set of sites such that any two sites belonging to it are
neighbors of each other).

As an example, the behavior of piecewise constant functions can be mod-
eled using first order MRF models on a finite lattice L with generalized Ising
potentials (Geman and Geman, 1984):

{-1, if Ii -Jl = 1 and Ji = fi

" VC(fi, fj) 1, if i- J = 1 and fi # fj
otherwise.

fi E Q= {ql,...,qAf} for alliEL (5)

We will use a free boundary model, so that the neighborhood size for a given

site will be: 4, if it is in the interior of the lattice; 3, if it lies at a boundary, but
not at a corner, and 2 for the comers.

The Gibbs distribution:

Pf(f) = -exp [ U0(]

Uo(f) ZV(f,,f,) (6)

defines a one parameter family of models (indexed by 7) describing l)iecewise

constant patterns with varying degrees of granularity.

We will assume that the available observations g are obtained froim a typical

realization f of the field by a degrading operation (such as sampling) followed
by corruption with i.i.d. noise (the form of whose distribution is known), so that
the conditional distribution can be written as:

P9g1 (g; f) = ex(-flE) (7)

with i = EiES i(fgi), where {(P} are some known functions, and a is a
paranieter.

.4



The posterior distribution is obtained from Bayes rule:

p fI1(f; g) 1 exp [ Up(f; g)] (8)

witl, Wit p Uf; g) 1 -- Uo(f) + E 4wf, go) (9)

iES

For example, in the case of binary fields (M = 2) with the observations taken
as the output of a binary symmetric channel (BSC) with error rate e (Gallager,

1975), we have:

P(g1ifi) (1- c), for gi = fi (10)
E.], , for gi :A fi

The posterior energy reduces to:

Up(f;g) = 1~ V(f 2, f3 ) + a Z(' - b(fi - gi)) (11)

where fi E {qlq2}:
1, ifa=- 0

a 0, otherwise. (12)

and

andlIn . (12)

3. Cost Functionals

The Bayesian approach to the solution of reconstruction problems has been

adopted by several researchers. In most cases, the criterion for selecting the
optimal estimate has been the maximization of the posterior probability (the
Maximum a Posteriori or MAP estimate). It has been used, for example, by

Geman and Geman (1984) for the restoration of piecewise constant images; by
Grenander (1984) for pattern reconstruction, and by Elliot et. al. (1983) and
Hansen and Elliot (1982) for the segmentation of textured images (a similar
criterion - the maximization of a suitably defined likelihood function - has
been used by Cohen and Cooper (1984) for the same purposes).

In some other cases, a performance criterion, such as the minimization of
the mean squared error has been implicitly used for the estimation of particular

classes of fields. For example, for continuous-valued fields with exponential an-
.-. ; tocorrelation functions, corrupted by additive white Gaussian noise, Nahi and

A- --
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Assefi (1972) and Habibi (1972) have used causal linear models and optimal
(Kalman) linear filters for solving the reconstruction problem.

The minimization of the expected value of error functionals, however, has
not been used as an explicit criterion for designing optimal estimators in the
general case. We will show that this design criterion is in fact more appropriate
in our case, for the following reasons:

It permits one to adapt the estimator to each particular problem.

It is in closer agreement with one's intuitive assessment of the
performance of an estimator.

It leads to attractive computational schemes.

As an example, we will now propose design criteria for two particular prob-
lems: image segmentation and surface reconstruction.

Consider a field f with N elements each of which can belong to one of a
finite set Qi of classes. Let fi denote the class to which the h element be-
longs. The segmentation problem is to estimate f from a set of observations
.gj,-..,gp}. Note that fi does not necessarily correspond to the image inten-
sity. It may represent, for example, the texture class for a region in the image
(as in Elliot et. al., 1983), etc.

A reasonable criterion for the performance of an estimate f is the number of
elements that are not classified correctly. Therefore, we define the segmentation
error e, as:

N

eC(f,f) Z(1 -(fi - fi)), fi,fi E Qj. (14)
i=1

In the case of the reconstruction problem, an estimate j should be considered
"good" if it is close to f in the ordinary sense, so that the total squared error

N

e.(f,f) =Z f - ,) 2  (15)

will be a reasonable measure for its performance.

To derive the optimal estimators with respect to the criteria stated above,
we first present the general result (which can be found, for example in Abend,
1968) which states that if the posterior marginal distributions for every ele-

merit of the field are known, the optimal Bayesian estimator with respect to
any additive, positive definite cost functional C may be found by independently
minimizing the marginal cxpected cost foi vt'li 'lement -"
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In more precise termIs, we will cousider cost finctionals C(f, )of the form:
c(.f, ) = iu A ,f,) (16)

iEL

with
( = 0 if a =b

Ci(a~b)> 0  ifa b, for alli. (17)

We will assume that the value of each element f, of the field f is constrained
to belong to some finite set Qj (the generalization to the case of compact set.s
is straightforward). The Optimal Bayesian estimator f* with respect to the
cost functional C is defned as the global minimizer of the expected value of C
over all possible f and g. One can prove that this estimate can 1-w fo i:id y
minimizing independently the marginal expected cost for each elenwnt. i.e..

= q : Cj(rq)P.(rlg) < E C'(rs)P,(rjg)
rEQi rEQi

for all s :/ q, and for all i E L (iS)

where Pi(r g) is the posterior marginal distribution of the element i:

P,(rlg) E Pfl(f;g) (19)
f: fi =r

The optimal estimators for the error criteria defined above can be easily
derived from this result:

In the case of the segmentation problem, we get that
f, = q E Q, : P,(qlg) _ P,(s.g)

for all s : q. (20)

We will call this estimate the "Maximizer of the Posterior Marginals" (fmPAM).

Fo, tlw ret,',structi( m 1 robleii. the optimal estimate is:I Q. _ )2 < f,_ ;)2
, : C(2 • I.f, q < ],-

for all q : q (21)

\, ':i:1 , tl.- ,,-tiuiit, th, "Thireshiolded Posterior Mean" (fTpAI).

1 l,~ ii1 d art q Ir lie )rati ical application of these results lies in the
'", ' !i , ,,IIplt;t oija 1 , ,t associated with the exact computation of the

.. ' i;1 ld al t l , i;Ill i f tli, ipoteiior (listribution given by (9), even for lat-
, 1 ' ' I:. T. T t,. - i/# - Ill lt, lt.xt r,tion we will present a general distributed

.I ..... 'L1 ' AI i l i 11- to aipiX i te these ( alinlitities as pI-cisely as we

p. •
°  °o  

. '.i "

' 0B
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4. Algorithms

The algorithms that we will propose are based on the use of the Metropolis
(Metropolis et al., 1956) or Gibbs Sampler (Geman and Geman, 1984) schemes,
to simulate the equilibrium behavior of the coupled MRF described by Equation
(9). We recall that the Markov chain generated by these algorithms is regular,
and their invariant measure is the posterior distribution P g. The law of large
numbers for regular chains (see, for example, Kemeny and Snell, 1960) estab-
lishes that the fraction of time that the chain will spend on a given state f will
tend to Pf j(f; g) as the number of steps gets large, independently of the initial
state. This means that we can approximate the posterior marginals by:1 n

Pi(q g) ;z._ 1.- E t(f't ) - q) (22)
t=k

and f by:

n-

t=k

where f(t) is the configuration generated by the Metropolis algorithm at time t,
and k is the time required for the system to be in thermal equilibrium. From
these values, fMPM and iTPM can be easily computed using (20) and (21).

This procedure is related to the use of simulated annealing for finding the
global minimum of Up (i.e., the MAP estimate: see Genian and Geman, 1984).
In our case. however, we are interested in gathering statistics about the equi-
libriun behavior of the coupled field at a fixed temperature T = 1, rather than
in finding the ground state of the system. This fact gives our procedure some
distinct advantages:

1. It is difficult to determine in general the descent rate of the temperature
(annealing schedule) that will guarantee the convergence of the annealing
process in a reasonable time (it usually involves a trial and error procedure;
though Geman and Geraan (1984) gave theoretical bounds for the annealing
schedule, these bounds are impractical). Since we are running the Metropo-
lis algorithm at a fixed temperature, this issue becomes irrelevant.

2,. Since in our case we are using a Monte Carlo procedure to approximate
the values of some integrals, we should expect a nict, convergence behavior,
in the sense that coarse approximations can be computed very rapidly, and
then refined to an arbitrary precision (in fact, it can be proved (: ee Feller,
1950) that the expected value of the squared error of the vstimate (22) and
(23) is inversely proportional to n).
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define the posterior inarginals).

With respect to the relative performance, we pofint out that in many cases,

particularly for high signal to noise ratios, the MAP estimate is usually close

to the optimal one. If the noise level is high, however, the difference in the

performances of the two estimators may be dramatic. This is illustrated in the
example portrayed in Figure 1. Panel (a) represents a typical realization of a

64 x 64 binary Ising not withl free b~oundaries. using a value of To = 1.74 (0.75

itti t'.s, the critical teilipera titln. of the in1finite latticc,: pni el 0)), th :1ft11t of

a bina rv svnenctric chatl; il with error rate f = 0.4: panil (c) the NIAP esti-
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'PNI ( M.C. ) ) ()bt; il,'d t silig teli, NMetropolis algorithm ;id EqulatiWio 10) t o

estil'ate the losterior ltilty. Ti l' tr, cr 's,.lomli vales of tile )ost c'lit ,I Etl'l i

p-+ ( Eqnation (22)) itd th' relatiVe Segxmiltaition elto (( /G4' ) l'I' a lre\w n1i
Talle 3.

,e.

It i, clar that theo tl)l~tXilitiott the NIPNI ,stliitts t , lIII,II itll l
' " ~((I) i . tt+r l;11 th,'. M API+  frt,l +,..l ;111N viewp imit.
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f g fMAP !MpM(M.C.) !MPM (Det.)

Energy -5594.8 -226.0 -6660.9 -6460.0 -6247.0

Seg. Error - 0.4 0.33 0.128 0.124

Table 3.

An intuitive explanation for this behavior comes from the fact that the

MAP estimator is implicitly minimizing the expected value of a cost functional

CMAP(f, f) which is equal to zero only if fi = f3 for all i, and is equal to,

say, M otherwise. If the signal to noise ratio is sufficiently high, the expected

value of the optimal segmentation error will be very close to zero, so that fMPM

and !MAP will coincide. In a high noise situation, however, the MAP estimator

will tend to be too conservative, since from its viewpoint it is equally costly to

make one or one thousand mistakes. The MPM estimator, in contrast, can make

a better (although more risky) guess, since making a few mistakes has only a

marginal effect on the expected cost.

A quantitative comparison of the performances of the MAP and MPM es-

timators, with respect to the segmentation error, can be obtained using the

ratio: eMAP

eTPM

"f,; exp [- Up(f; g)]e.(f, MAP(g)) (24)

z-/,, exp [ - Up(y; g)] e. (f, TpM(g))

In Figure 2 we show a plot of the ratio r for a 2 x 2 lattice, for different

values of the error rate f and the natural temperature To. As expected, r is

never less than 1. In the worst case (for c = 0.1 and To = 0.2) the error of the

MAP estimate is 1.17 times that of the MPM estimate: if To is not too small

and f is not too large, both estimates coincide, and as f approaches 0.5 (low

signal to noise ratio), the MPM estimate is consistently better than the MAP.

An experimental analysis of larger lattices reveals a similar qualitative behavior,

but the values of r are much larger in this case (see Table 3).

5. Examples of Applications in Vision

5.1. Reconstruction of Piecewise Constant Functions

The efficient solution of tHils probleni is 1ihvant for sevcral r, asons: 1inary im-

- Jp.t.V.J.:
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Figure 2. Ratio of the average errors of the MAP and MPM estimators for a 2 x 2
Ising net.

ages (or images consisting of only a few grey levels) are directly useful in many
interesting applications (for example, object recognition and manipulation in

restricted (industrial) environments); besides, several perceptual problems, such
as the segmentation of textured images (Elliot, et. al. (1983); Hansen and El-
liot (1982); Cohen and Cooper (1984)), or the formation of perceptual clusters
(Marroquin (1985)) can be reduced to the problem of reconstructing a piecewise

constant surface.

The prior model for this kind of functions is given by equations (2) and (6),
and the posterior distribution by Equation (8). If the parameters that character-

ize the system (namely, the "natural temperature" To and the noise parameter

a) are known, the MPM estimator produces excellent results, such as the one
illustrated in Figure 1.

5.1.1. Parameter estimation

In most practical cases, however, we are only given the noisy observations g and
, , ... general qualitative information about the structure of the field and the noise, so
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(a) (b) (c)

Figure 3. (a) Original ternary MRF. (b) Noisy observations (additive Gaussian noise).
(c) Optimal (maximum likelihood) estimate.

that f, the noise parameter a (which is a function of, for example, the error rate
e when the noise corruption corresponds to a Binary Symmetric Channel (BSC),
or of the variance a2, in the case of additive, white Gaussian noise), and the

interaction parameter To have to be simultaneously estimated. One plausible
approach (Geman, 1985) is to use the "EM algorithm" (Dempster et al., 1977)

to find a value for the parameters that maximizes locally the likelihood function:

L(a, To) = logP(gIa, To) (25)

(see Note [1]). For example, for a noise model that corresponds to a BSC with

error rate f, the EM algorithm takes the following form. We start with some
estimates o(O),To(O) for the parameters. The pth iteration (for p = 1,2,...)

consists of two steps.

Expectation (E-step): Find the conditional estimates for U0 and i (see

Equations (6) and (9)).

Uo(p) = E[Uolg, a(p), To(p)] (26)

i(p) = E[ifg, a(p),To(p)] (27)

These estimates (which are ensemble averages taken with respect to the

posterior distribution Pfig; see Equation (8)) can be approximated using the

Monte Carlo procedure described in Section 4, i.e., computing time averages of
the associated ergodic ("Gibbs") chain, generated using the posterior energy Up.

Maximization (M-step): Find To(p + 1),a (p+ 1) such that:

E[Uo Ia(p + 1), To (1) + 1)] = Uo(p); (28)

E[ifa(p-4 1),T(I, - 1)] = i(p). (29)
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Note that the left hand side of the above expressions -- the unconditional expec-

tations of the sufficient statistics U0 and i - are independent of the data. Fhus,

the function

E[Uola, To] - E[UoITo] = 'I(T 0 ) (30)

can be pre-computed for any given lattice size, using again the Monte Carlo

procedure of Section 4, but this time with the prior energy Uo instead of Up

(in Figure 3 we show this function for a 64 x 64 binary Ising lattice with free

boundaries). In this way,

T -(+ %P- I((P) ) (31)

can be computed directly using a table look-up procedure. a(p+i) can be coin-

puted directly from the noise statistic e(p); for example, for a BSC we have:

a(p+) = In 1 (32)
1 - i P)

It can be shown that this algorithm will eventually converge towards a fixed
point which will be a local maximun of L(a, TO). Its use, however, has some

problems:

Firstly, we note that each iteration of the algorithm - in particular, the E-

step - may require a relatively large number of iterations of, say, the Metropolis

algorithm. Since the updated values of the parameters (a(p + 1), To(p + 1))

are not necessarily close to the old ones (a(p), To(p)), the Gibbs chain has to
be allowed to reach equilibrium each time, before starting to compute the cor-

responding time averages, which makes the whole procedure computationally

expensive. Besides, the likelihood function L will, in general, be multimodal,
so that the final result may depend strongly on the choice of the initial values

a(0),T(O) (in fact, it may be necessary to make several runs with different

starting points). Finally, we have found experimentally that the performance of

this estimator deteriorates drastically as the SNR falls below a certain level (for

example, when the error rate exceeds 0.25, for To = Tc (the critical temperature
of the infinite lattice)).

For these reasons, we have used a different approach, which is computation-
ally more efficient, and has better experimental performance. The basic idea is

to use some statistics computed from the data to constrain the space of plau-

sible values for the estimates to a smooth curve. In this way we can perform

an exhaustive search for the global minimum of an appropriate merit function

by varying continuously the values of the parameters, so that the equilibrium of

the Gibbs chain is maintained.
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To illustrate this idea, we consider the case of a binary Ising field where

the noise corruption corresponds to a BSC (the idea can be easily extended to

M-ary Ising fields and other noise models - see Note [3]).

We define the statistic U. as:

Ug = i,jV(gi, gj) (33)

where V is an Ising potential (see Section 2). If the error rate of the channel is

e, we have that

E[Uga, To] 11 E[UoIa, TJ](4E2 - 4f + 1) = %F(To)(4f2 - 4c + 1) (34)

If we make the assumption that

E[U la, To ] = U, (35)

where U9 is the observed statistic (see Note [2]), we can constrain the search for

the estimates &, To to the curve given by the equations:

= 1/2[1 -))1 /2 ]

In- (36)

As a merit function we have used the expected degree of uniformity in the spa-
tial distribution of the residuals. In particular, we define a likelihood function

L by covering the lattice with a set of m non-overlapping squares (say, 8 pixels
wide); computing the relative variance of the noise parameter, estimated over

each square, and adding all these terms together:

= - E (37)

j=1

where io and i are the (conditional) expected values of the noise density over

the whole lattice, and over the jth square, respectively, and can be approximated
as time averages of the corresponding Gibbs chain (using the posterior energy

U. and a and To as parameters).

The optimal estimate for (a,T) can now be obtained as the global min-

imizer of L over the curve (36). Note that if To (and hence a) are varied
slowly enough, so that the associated Gibbs chain is maintained approximately
in equilibrium, the computational cost of this search will be equivalent to that
of a single "simulated annealing" experiment.

This estimation algorithm allows us to reconstruct a pattern f from the

noisy observation, g without having to adjust any frec parameters. The (only

prior assumptiors correspond to the qualitative structure of the fic~d f (first

order. isotr.opic MRF) and to the nature of the noise proces,. In proctice, this

means that we can apply it to restore any lpiecewise unif ,rm linage wit h uniforni
arraniularity. cven if it lias not ,chni genciai-,1,1 a it, M irkO,'" NV, hli e iised
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(a) (b) (c)

Figure 4. (a) Synthetic image. (b) Noisy observations. (c) Maximum Likelihood
Estimiiate.

this ;dgorit hm to reconstruct a variety of binary images with excellent results. In
Figure 4 we show such a restoration. The observations (b) were generated from
the synthetic image (a) with an actual error rate of 0.35 (assumed unknown).

The optimal estimate for f is shown in (c). It should be noted at this point
that for particular problems, it may be possible to find more efficient schemes.
Thus, for binary fields sent through a BSC, we have developed a very efficient
(deterministic) procedure for approximating the MPM estimator for f which
can also be used to find the optimal estimates for a and To (see Marroquin,

1985 for details).

5.2. Reconstruction of Piecewise Continuous Functions.

In this section we will illustrate the application of the local spatial interaction
models and estimation techniques that we have described to the reconstruc-
tion of piecewise continuous functions from noisy observations taken at sparse

locations.

In this reconstruction, it will be important not only to interpolate smooth
patches over uniform regions, but to locate and preserve the discontinuities that
bound these regions, since very often they are the most important parts of the
function. They may represent object boundaries in vision problems (such as
image segmentation; depth from stereo; shape from shading; structure from
motion. etc.); geological faults in geophysical information processing, etc.

-%
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As we mentioned in Section 1.4, an approach to this problem (see Terzopou-
los (1984)) consist of first interpolating an everywhere smooth function over the
whole domain, then applying some kind of discontinuity detector (followed by
a thresholding operation) to try to find the significant boundaries, and finally,
reinterpolating smooth patches over the continuous subregions.

The results that have been obtained with this technique, however, are not
completely satisfactory. The main problem is that the task of the discontinuity
detector is hindered by the previous smooth interpolation operation. This be-
comes critical when the observations are sparsely located, since in this case, the
discontinuities may be smeared in the interpolation phase to such a degree that
it may become impossible to recover them in the detection phase.

In contrast, in the Bayesian approach, the boundary detection and interpo-
lation tasks are performed at the same time. To apply the general reconstruction
algorithms developed above to this problem, the main issue is the representation
of the concept of "piecewise continuity" in the form of a prior Gibbs distribution

in a meaningful way.

A flexible construction involves the use of two coupled MRF models: one
to represent the function (the "surface") itself, and another to model the curves
where the field is discontinuous. A coupled model of this kind was first used by
Geman and Geman (1984) in the context of the restoration of piecewise constant
images. Terzopoulos (1985) has recently attempted to translate this idea in the
continuous and deterministic framework of regularization.

This model can be adapted to our problem by modifying the choice of the
potentials and the neighborhood structure of the coupled MRF's. Specifically,
the following modifications are needed:

1. Since in our case the observations are sparse, it becomes necessary
to expand the size of the neighborhoods of the line field, to prevent the forina-
tion of "thick" boundaries between the smooth patches (i.e., adjacent, parallel
segments of active lines in these regions). In particular, we propose that the
dual lattice be 8-connected, with non-zero potentials for the cliques of the form
illustrated in Figure 5 (a) and (b). The inclusion of the cliques of Figure 5-b has

Ui the additional advantage of penalizing the occurrence of sharp turns, permitting
us to model the formation of piecewise smooth boundaries using a binary line
process instead of the 4-valued process proposed by Geman and Geman. The
potentials for these cliques are computed in the following way:

Let V,, Vb denote the potentials associated with the cliques Ca, Cb of Figure
L. 5 (a) and (1,), respectively, and let Sk (k {a, b}) denote the number of line -

I
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Figure 5. Cliques for the line process.

elements belonging to Ck that are "on" at a given time, i.e.,

Sk = 1, , k = a,b (38)
iECh

The potentials Vk are given by:

Vk =10k(Sk) , k=a,b (39)
where 3 is a constant, and the functions Ok are defined by the following tables:

Sa 0 1 2 3 4
Oa 0 0.4 0.25 1.2 2.0

Sb 0 1 2

Ob 0 0 10

It is not difficult to see that this choice of potentials will effectively discour-
age both the formation of thick boundaries (Sb = 2) and the presence of sharp

turns (Sa = 3 and/or Sb = 2).

2. The potentials of the depth process, which is now continuous- -valued,

have to be modified to express the more relaxed condition of piecewise continuity
(instead of piecewise constancy). Specifically, we propose:

( 2(-1), for li-il
V(f, f) 1,0) - - otherwise. (40)

Note that l e {0, 1}.

3. Unlike the case of piecewise constant surfaces, we now have to worry
olit tile naxiiinl alshtolite difference in the values of two adjacent deth sites

,.1
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that we are willing to consider as a "smooth" gradient (and not a discontinuity).
This value, which in general is problem-dependent, determines the magnitude
of the constant P6 in Equation (6), which can be interpreted as the coupling
strength between the two processes.

Assuming that the observations are corrupted by i.i.d. Gaussian noise, we
get the following expression for the posterior energy:

Up(f, 1; g) = Eff - f2(1 -

+ '(f, g,)2 + EV(l)+ EVb(l), (41)
iES C. Cb

where S is the set of sites where an observation is present. As a performance
criterion we will use a mixed cost functional of the form

em (f, 1, ,i) = > (A - f,) 2 + E (1- 6(/j - j)), (42)
iELI jELi

where Lf, LI denote the depth and line lattices, respectively. This error criterion
means that the reconstructed surface should be as close as possible to the true

'- ,.- (unknown) surface, and that we should commit as few errors as possible in the
assertions about the presence or absence of discontinuities.

Applying the results of section 3, we find that the optimal estimators will
be the posterior mean for f and the maximizer of the posterior marginals for I.

There is one serious difficulty that prevents us from applying directly the
general Monte Carlo procedure that was derived above to the computation of
these optimal estimates: since the depth variables are continuous-valued, if we
discretize them finely enough to guarantee sufficient precision of the resullts,
the computational complexity of either the Metropolis or Gibbs Sampler algo-
rithms will be very large. One way around this difficulty is to note that for any
fixed configuration of the line field, the posterior energy becomes a non-negative
definite quadratic form

.V(f 1, g)= f, ( _ f,)2 + aE(fj-_ g,)2 + K (43)

where a and K are constants (note that the first sum is taken only over those

pairs of sites whose connecting line ('lement is "off," awl the second one over
the set S). This means that the posterior (listrilhution of the (lepth field is con-
ditionallv Gaussian, so that, for any fixed 1, we can find the optimal conditional
estimator f/" as the minimizer of (25).

Let us define the set F* as

F (f,f }. 1 f44)

% N"k

,s~~ ~~~~~ % ,
o

,.••, *-,
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Figure 6. Hybrid network implementing the surface reconstruction algorithm of Sec-
tion 4. The voltage at every node represents the height of the surface. Inside every
rectangular box there is a resistance of unit magnitude and a switch whose state is

controlled by the corresponding line element (see text).

It is clear that, if!, 1 are the optimal estimates for our problem, we have that

(f,i) E F, (45)

which suggests that we can constrain the search for the optimal estimators to

this set. This can be done, in principle, by replacing the posterior energy with

the function
U*(l) = U(f*, 1) (46)

(which depends only on 1), and use the standard Monte Carlo procedures to find

the optimal estimator i. To illustrate this idea, let us consider a physical model

in the next section.

5.2.1. Hybrid Parallel Computers

It is well known that the steady state of an electrical network that contains only

(current or voltage) sources and linear resistors will be the global minimizer of
a quadratic functional that corresponds to the total power dissipated as heat

IrI
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(Oster et al, 1971). It is therefore possible to construct an analog network that

will find the equilibrium state of the depth field for a given, fixed configuration of

the line process, i.e., that will minimize the conditional energy (13) (see Poggio

and Koch, 1984; also Poggio et al., 1985). This suggests a hybrid computational

scheme in which the line field (whose state is updated digitally, using, say, the

Metropolis or Gibbs Sampler algorithms) acts as a set of switches on the con-

nections between the nodes of the analog network whose voltages represent the

depth process. In particular, if fi represents the voltage at node i, the hybrid

network can be represented as a 4-connected lattice of nodes (see Figure 6) in

which:

A resistance (of unit magnitude) and a switch (controlled by the line ele-

ment 1.,) is present in every link between pairs i,j of adjacent nodes.

If an observation gi is present at site i, a current of magnitude equal to agi

is injected to the corresponding node, which must also be connected to a

common ground via a resistance of magnitude 1/a (see Equation 13).

A direct application of Kirchoff current law shows that at each node i of
this network we will have

> (fi - fi)(1 - li) + aqif, = aqig,, (47)
jENi

which corresponds to the condition

grad U(fjl) = 0, (48)

so that the equilibrium configuration coincides with fj*"

This scheme can be used, in I)rinciple, to construct a special purpose hybrid

computer for the fast solution of p~roblems of this type. it a digital machine, the

exact implementation of this strategy will in general be conuptatioially very

expensive, since fi* inust be comlputed every time a line sit(' is urilx!ted. It is

possible, ho(wever, to dev,,lop apl)roxiuations which have ai excelle it experi-

imental perf,l-inance. and lead to efficient iniplei.entations ( Marro(qIlin. 19S3).

The perfortiuance of this method is illistrated in Figur,, 7. in which we sh olw:
4 (with height co(le(t by grey level) the bservations (a); the initial st;.t,e of the

" zaetwork (with all the lines turned "'off") (b); the final reconstructed surface (c),

aud the boundaries found by the algorithm (d), for a square a.t height 2.0 over

a background at constant height 1.0. "

2 • - - •-. -. 
o
• -- 

o
" A".5."AA- i" 
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-
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(a) (b) (c)

FIgre 7. (a) Observations of 3 rectangles at heights 2.0, 3.0 and 2.0 over a background
at height 1.0 (height coded by grey level; a white pixel means that the observation is
absent at that point). (b) Equilibrium state of the network with all lines turned "off."

(c) Optimal estimate.

6. Signal Matching

In all the cstimation problems we have studied so far, the posterior energy func-

tion had the form

UI,(f; g) = Uo(f) + 'i(fi, gi), (49)

where Uo(f) corresponded to the MRF model for the field f. The functions 4i,
whose precise form depended on the particular noise model, were non-decreasing
functions of the distance between fi and gi.

There are some cases, however, when the conditional probability distribu-
tion of the observations Pglf(g; .f) is multimodal (as a function of f) which causes
the functions bi to be non-monotonic, so that the solution to the problem re-
inains ambiguous, even if the observations are dense, and the signal to noise
ratio arbitrarily high. To illustrate this situation, we will study an important

,'. instance of it: the "signal matching" problem, whose one-dimensional version
is as follows:

Consider two one-dimensional, real-valued sequences hL, hR, where hL is
ol)tained from lit? by shifting some subintervals according to the "disparity so-

. . .
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quence" d:
hL(i) = hR(i + di), (50)

with

The signal matching problem is to find d given hL, hR. (In a more realistic

situation, we do not observe hL, hR directly, but rather some noise-corrupted

versions gL, gR). Some interesting instances of this problem are the match-

ing of stereoscopic images along epipolar lines (Marr and Poggio, 1976); the

computation of the dip angle of geological structures from electrical resistivity

measurements taken along a bore hole, and the matching of DNA sequences.

To make the discussion more specific, we will consider a simple example,
in which the sequences hL, hR are binary Bernoulli sequences; we will assume

that the noise corruption process can be modeled as a binary symmetric channel

with known error rate, and that d is known to be a piecewise constant function.

A well known instance of this problem is the matching of a row of a random dot

stereogram with density p (Julesz (1960)), when the components of the stereo
pair are corrupted by noise.

The stochastic model for the observations is then constructed by assuming

that the right image is a sample function of a Bernoulli process A with parameter

p; i.e.,

9R(i) = A(i). (52)

The left image is assumed to be formed from the right one by shifting it by a
variable amount given by the disparity function d, except at some points where

an error is committed with probability c. Note that some regions that appear in
the right image will be occluded in the left one (see Figure 8). The "occlusion

indicator" Of can be computed deterministically from d in the following way:

kd(i) 1, if di-k di + k, for some integer k E (0, m) (3){ 0, otherwise.

The occluded areas are assumed to be "filled in" by an independent Ber-

noulli process B. The final model is then:{gR( di) with prob. 1 - e, if d(i) = 0
gL(i) = 1 - YR(i + di) with prob. e, if Od(i) = 0 (54)

Bp(i) with prob. 1, if Od(i) = 1.

Note that in the two dimensional case, the index i denotes a site of a lattice,

and therefore it can be represented as a two-vector (i1 , 2 ) whose components

denote the column and row of the site, respectively. To simplify the notation,
we will adopt the following convention throughout this section: when a scalar
is added to this vector index (as in ggi(i + d,) ;,1d d,(1 ), it will bw implicitly
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gR

Lines of Constant
Disparity

H- +di I
i+dI

i-I i
gL.

Figure 8. Occluded Regions: The horizontal and vertical axis represent points in one
row of the left and right images, respectively. Matching points are represented by black
circles. Any match in the shaded region will occlude the point i.

assumed that it is multiplied by the vector (1, 0) (so that the above expressions
should be understood as gR(i + (dj,0)) and d.+(k,o), respectively). Using this

convention, the observation model of Equation (27) can be applied either to the
one or to the two-dimensional cases.

Notice that even if the observations are noise-free (f = 0) the solution of

the problem remains ambiguous, and it cannot be uniquely determined unless
some prior knowledge about d (for example, in the form of a MRF model) is in-

troduced. The use of a MRF model in the stereo matching case corresponds to a

quantification of the assumption of the existence of "dense solutions" (this term
was introduced by Julesz (1960), and essentially corresponds to the assumption
that the disparity d varies smoothly in most parts of the image; see also Marr

and Poggio (1979)), and the use of the occlusion indicator corresponds to the
"ordering constraint" (i.e., the requirement that if i > j, then i + d, > j + dj,
see Baker (1981); we put Od = I whenever this constraint is violated).

To formulate the estimation problem, we will consider the sequence gt as
"observations," while gR will play the role of a set of parameters. Thus. from

(27), we have (assuming, for simplicity that p = L

1-f if 1d(i)=0andgR(i+d,)=k

P(L(i)= kid, R) = P(k) ={ if Od() = 0 and 9n(i + d) # k.

i if 0(i) = 1
2
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As a prior model for the disparity field, we may use a first order MRF with
generalized Ising potentials, such as the one presented in Section 5.1. Other
models may also be used, including the coupled depth and line fields that we

discussed in the previous section. For the present, let us assume that the sim-
pler Ising model is adequate. Note that even when the matching problem is
one-dimensional (we are assuming that there is no vertical disparity between
the images, so that the matching can be done on a row-by-row basis), the
two-dimensional nature of the prior MRF model for the disparity introduces a
coupling between matches at adjacent rows. The posterior energy is

Up(d;g) = 00.V(di,dj) + OZtd(i)ln2+

+2. 10 - 0d(i))(gL(i) - gR(i +di)), (56)

where
a = In E) (57)

It is possible to apply the general Monte Carlo algorithms presented above
to approximate the optimal estimate d with respect to a given performance
measure (such as the mean squared error). Their use in this case, however, is Pr

complicated by the introduction of the occlusion function Od in the posterior
energy: the size of the support for this function equals the total number of al-
lowed values for the disparity (see Equation (36)). If this number is large, the
computation of the increment in energy, or of the conditional distributions (if
the Gibbs Sampler is used) may be quite expensive. In many cases, however,
the size of the regions of constant disparity is relatively large compared with the
size of the occluded areas. In these cases, one can approximate the posterior
energy by:

Ua o- V(d,,dj) + - 9R(i + d,)) (58)

and increaso significantly the computational efficiency. Notice that this approx-
imate functional is very similar to the functional suggested by standard rgu-
larization (compare Table 2). It is also possible, particularly for the high signal
to noise ratio case, to design deterministic, highly distributed algorithms for the
efficient computation of the optimal estimator. The details of these designs can
be found in Marroquin, 1985.

To illustrate the performance of this approach, we present in Figure 9 a
random dot stereogramn portraying a square floating over a uniform backgrcund
(panel (a)), and the reconstructed sumfice (panel (b)).

?.r.f .i
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(a) (b)

Figure 9. (a) Random dot stereogram. (b) Reconstructed surface.

7. Parallel Implementations.

7.1. Connection Machine Architectures.

The general Monte Carlo procedure that we have presented for the approxima-
tion of thc optimal Bayesian estimators of MRF's can be greatly accelerated
if it is implemented in a, parallel architecture. A necessary condition for the
convergence of the proLability measures of the Markov chains defined by the
Metropolis, Gibbs Sampler, or heat bath algorithms to the posterior Gibbs dis-
tribution (and therefore, for the convergence of the approximations given by
Equations (22) and (23) to the desired estimates) is that if two sites belong to
the same clique, they are never updated at the same time. It is important to
note, however, that this condition is also sufficient only for the case of the Gibbs
sampler and heat bath algorithms: if one updates simultaneously the states of
all non-neighboring sites, the regularity of the resulting Metropolis chain will
be destroyed, so that it will no longer be possible to guarantee the convergence
of the Metropolis algorithm to the desired result (see Note [4]).

If one implements the Gibbs sampler in a parallel architecture in which a

processor is assigned to each site, the total execution time will be reduced by a
factor of

NN 
(59)

where K is the so called "chromatic number" of the graph that describes the
Lchgbl)'l,,,i s iictur,', and it is e"jual to the minimum number of colors needed

,.'. ~to color the sites of the lattice in such a way that no two neighbors are the same.

;Ii
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An example of such a massively parallel architecture is the -Coiniection
Machine" computer (Hillis, 1985), built by Thinking Machines Corporation.

This machine was originally conceived at the Artificial Intelligence labora-

tory at MIT and was further developed and now marketed by Thinking Machines

Corporation. It is a "Single Instruction Multiple Data" (SIMD) array proces-
sor consisting in the version presently available at the AI Laboratory of 64,000

processing units (each with a single bit Arithmetic/Logical unit) organized in a
four-connected lattice that is 128 elements square. Besides this nearest-neighbor
connectivity, it will also be possible (although computationally more expensive),
to connect any two processors in the array using a router network.

At each cycle of the machine an instruction is executed by each processor,
and a single bit is transmitted to its neighbors. This means that the updating
scheme can be implemented most efficiently if the field is first order Markov,
but higher order processes can also be implemented without using the router by
successively propagating the transmitted state (the execution time, therefore,
will grow linearly with the order of the field).

To make this discussion more concrete, consider, as an example, the prob-
lem of finding the optimal estimate for an M-ary, first order MRF with Ising
potentials (i.e., the segmentation of a piecewise constant image) from noisy
observations. Let us assume that the estimator is to be implemented in the
Connection Machine system, and suppose that by the use of appropriate scaling
factors, all the numbers can be represented as 16-bit integers. We will use the
following conservative assumptions: We assume that 16 cycles of a single 1-bit
processor are needed to perform 16-bit addition, subtraction or comparison;
162 cycles to perform multiplication or division; 2 x 162 cycles for generating a
pseudo-random number with uniform distribution on a given interval; 16 cycles
for memory transfer operations, and 6 x 162 cycles for computing an exponential.

Assuming that we run 250 iterations of the system, and ignoring the over-
head time we get that

Exec. Time ; 1.4(M- 1)106 cycles (60)

For the particular case of binary images, we have developed a deterministic
scheme for which this execution time can be reduced by an order of magnitude
(see Marroquin, 1985).

In the case of the reconstruction of piecewise smooth functions from sparse
data, the optimal estimator can also be implemented in this machine. To study

this implementation, we first note that the chromatic numbers of the graphs as-
sociated with the line and depth neighborhood systems are 4 and 2, respectively,

- .
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1 0 2 1 0 3

3 4 3 4 1 0 2

0 2 1 0 2 0 4

4 3 4 3 (b)

1 0 2 0 1 0 4

3 4 3 4 20 1

0 2 0 1 0 2 0 3

(a) (c)

Figure 10. (a) Coloring of the coupled line-depth lattice. (b) and (c) Elements whose
state is stored in each of the two types of processors of a 4-connected parallel archi-
tecture.

which means that the coupled process has a chromatic number of 6. In Figure
10 (a) we illustrate one possible "coloring."

The colors of the line process are represented by the numbers 1,2,3,4, and
those of the depth process by white and black circles. The updating process
can be implemented in a 4-connected architecture by assigning one processor
to each depth site and its four adjacent line elements. We will thus have two
different populations of processors, whose configurations are shown in Figures 9
(b) and (c), respectively.

Each complete iteration consist on 6 major cycles: in the first two, the state
of the white and black depth variables is respectively updated, and in the next

four, the new states of the binary line variables stored in (say) the white proces-
sors are successively computed and transmitted to the corresponding memory
locations of the neighboring black processors. Note that in this scheme we have
some redundancy in the use of memory (each binary variable is stored twice),
but the state of all the elements needed for each updating operation is always
available from adjacent processors. The Monte Carlo algorithm requires about
200 iterations to converge. As before, we have also developed in this case a
deterministic scheme with very good experimental performance, for which the
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execution time can be reduced by at least an order of magnitude. E. Gamble
has now implemented several MRF models on the Connection Machine system
at the Al Laboratory as part of the Vision Machine project (Poggio et al., 1987).

7.2. Hybrid Analog-Digital Computers and Hopfield Networks

As we mentioned in section 4.2.1, the reconstruction of piecewise continuous
functions can be achieved by coupling two MRF's, one corresponding to the
continuous field and the other to the discontinuities. From this scheme we have
suggested a special purpose parallel computer consisting of an analog network of
resistances - corresponding to the continuous intensity field - and a digital net-
work - corresponding to the line process, coupled via D-A and A-D converters.
The idea suggested by computer experiments (Marroquin, 1985) is that the two
processes can run on different time scales, a slow one for the digital part and a
fast one for the analog network. In this way the two processes are effectively de-
coupled and the continuous field finds its equilibrium effectively instantaneously
after each update of the line process. (Koch, Marroquin and Yuille (1985) dis-
cuss implementations of this idea.) It can be extended to inultilayered hybrid

networks, each layer corresponding to a MRF and being digital or analog de-
pending on the continuous or binary nature of the field. Hybrid multilayered

architectur,-s of this type are especially attractive for implementing the fusion
of several vision processes.

Finally, we mention that Koch, Marroquin and Yuille (1985) have been
experimenting successfully with a special type of analog networks - Hopfield
networks - whose equilibrium states correspond to approximations of the opti-
mal estimators.

8. Conclusions

In this paper we have presented a probabilistic approach to the solttion of a
class of perceptual problems. We showed that these prolens can be ixducc( to
the reconstiuction of a function on a finite lattice from a. set of degradled olbser-
vations, and derived the Bayesian estimators that provi(le an optimal solut ion.
We have also developed efficient distributed algorithms for the compuitation of
these estimates, and discussed their implementation in different kinds of hard-
ware. To demonstrate the generality and practical value of this approach, we
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studied in detail several applications: the segmentation of noise-corrupted im-
age.,: the leconstriictioii of piecewise smooth surfaces from sparse data and the
recoi struction of lepth from stereoscopic measurements.

8.1. Connection with Standard Regularization

The maximum a postetiori (MAP) estimate of a MRF is obviously similar to a
variational principle of the general form of Equation (7), since the use of this
criterion defines the optimal estimator as the global minimizer of the posterior
energy Up (Equation (11)): the first term measures the discrepancy between the
data and the solution, the second term is now an arbitrary "potential" function
of the solution (defined on a discrete lattice). It is then natural to ask for the
connection between standard regularization principles and the MRF approach.
It turns out (from Equation (8)) that a MAP estimate leads to the minimization
of a functional Up (see Equation (9))- in general not quadratic - that reduces
to a quadratic functional, of the standard regularization type, when the MRF
i is continuous-valued, the noise is additive and gaussian (the term , Di( f,g,)
will be quadratic) and first order differences of the field are zero-meaa, indepen-
dent. gaussian random variables (thus the a priori probability distribution is a

ILGibbs distribution with quadratic potentials so that the term the term UO(f) is
quadratic).

8.2. The Fusion Problem

This approach also permits, in principle, the incorporation of more than one
modality of observations into a single estimation process, as well as the simil-
taneous estimation of several related functions from the same data set. This
makes one hope that this framework could be useful in the solution of difficult
problems that require such an integrated approach.

For instance, the stereo matching problem in real situations has not been
solved yet in a completely satisfactory way. The same can be said of other
related perceptual problems such as: edge detection; image segmentation; the
recovery of the shape of an object from a single two-dimensional image (the
,.shape form shading" problem), and the segmentation of a scene into distinct
objects, as well as the recovery of their three-dimensional structure from the
analysis of images formed at successive instants of time (the "structure from
motion" problem). All these problems are obviously related, and it is intuitively
clear that the individual solutions that can be obtained should improve if the
.i.mitmal constraints that the solution of each individual problem imposes on the

6V .
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others were taken into account. Thus, the presence of a brightness edge should ' 4
increase the likelihood of a depth edge, and vice versa; the depth estimated
from stereo should be compatible with the shape derived from shading; points
belonging to the same region in an image should move together, etc. We be-
lieve that these constraints can be incorporated in the potential functions of the
corresponding MRF models, so that the combined optimal estimation process
represents, in fact, an integrated cooperative solution to these problems, with
a significantly improved performance. Recently, Poggio has discussed how to
use coupled MRF models to integrate information from different vision modules
(Poggio, 1985). Gamble and Poggio (in Poggio et al., 1987) have implemented
efficient algorithms to integrate stereo, motion and intensity information to ob-
tain a robust description of the discontinuities in the scene.

9. Notes

[1]: It is computationally unfeasible to perform the maximization of the like-
lihood function L directly, due to the extraordinary complexity of P(gla, To):

Zfexp [- Up(f;gkk, T0 )]
P(gla, To) = EI,h exp [- U(f; hla, To)] (61)

where UP is given by Equation (9). However, the form of the "complete data"
distribution P(f, gla. TO) (the so-called "regular exponential family form"; see
Dempster et al., 1977) is such that at every local maximum of L we have that:

E[Uojg, a, To] = E[Uola, To]

E[flg,a, ToI = E[ija, To] (62)

where i and Uo are defined by Equations (6) and (7).

Note that both the left and the right hand sides of the above equations can
be approximated using the Monte Carlo procedure described in Section 4 (us-
ing the posterior and prior energy, respctively), and that the right hand side
is independent of the observations. These relations forn the basis of the EM
algorithm.

[2]: Since both the random field f and the noise process are s;,ationiary,
we have that

E[(o( Evlo rg) - - 63)
# of cliques of the lattice

so that this assumption becomes asymp~totically correct for large lattices.
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[3]: Consider an M-ary field f with Ising potentials, corrupted with 0-
mean, additive white Gaussian noise with variance a' < X* Suppose that

f, EQ={Iq :q =qo+ 20, k =1,2,......Ml Ifor all1. (64)

We dlefine the statistic TVg as

wher-e g is. the observation process, ANC is the number of nearest-nei,ghbor pairs
in the lattice,

1V(gi, gj) 1i, if .j # 1 and Ii -jl1=1 (66)
10, ifIi -AI#41,

and ?ui = qo + 2ncl, with n an integer such that

qO±+(2n -1)a < gi50+ (2n +1). (67)
Note that it is possible that j Q.

D efine (~ ,a x[ X / a d .( 8

It is not d~fficult to see that

U7E[Wgja. To) 1 - (A + B) + EjUoJToj(A - B) (69)

where UO LI IoN(-.

A = Pr (g (gi,gj) 11 -V(fi, f,) = 1),

B =-Pr(VV9 (g,g3) 1 -IV (fi,,f) = 1) (70)

(note that Ef Uo ITo) = T1(To) is data independent, and therefore, it can be
computed off-line).

Assuming that

for q =1,2,.. .,M -1, (71)

we can approximate A and B by:

A(a) = 6a 2 + 4b 2 - 4ab - 4a + 1
1 2 2

*B(oj = ( 3 a 3 b + 2 ab + 2 a), (72)
where a = (,a) and b = 0(19, or). (The above approximation has been com-
puted assuming that 0(5D,a,,x 0. If this is not true, more terms can easily
be inchudedi.)

Assuming, as before, that

E[VWq l, To] = T 9 (comnputed from the data), (73)
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we can find the optimal estimate for (a, To) as the global maximizer of an ap-
propriate merit function along the curve

T = W 9 + A(a) + B(a) -1A(a)- B(a) (74)

using a "composite annealing" strategy.

To define the merit function, we cover the lattice with a set of non-overlapping
squares and add the relative variance of the noise parameter over each square,
thus:

L~,Oro -Z ~Oai) 2  (75)
j=1

ao and aj can be approximated as time averages, with respect to the Gibbs
chain with a and To as parameters, of the estimated noise variance over the
whole lattice and over the jth square, respectively.

[4]: As a simple example for which the regularity of the Metropolis chain
is destroyed, consider a 3 x 3 ginary Ising lattice with periodic boundary condi-
tions. It is easy to see that for the initial state:

1 0 1
0 1 0. (76)

1 0 1

The Metropolis algorithm, either with lexicographic updating ordr, or with
simultaneous updating of all non-neighboring sites, will produce, deterministi-
cally, the sequence:

1 0 1 0 1 0 1 0 1
1 0 1-+ 0 1 0-* 0 1 0--... (77)
0 1 0 1 0 1 1 0 1

for any finite temperature.
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